The Dynamic of the Apical Ectoplasmic Specialization between Spermatids and Sertoli Cells: The Case of the Small GTPase Rap1

نویسندگان

  • Giovanna Berruti
  • Chiara Paiardi
چکیده

Despite advances in assisted reproductive technologies, infertility remains a consistent health problem worldwide. Spermiation is the process through which mature spermatids detach from the supporting Sertoli cells and are released into the tubule lumen. Spermiation failure leads to lack of mature spermatozoa and, if not occasional, could result into azoospermia, major cause of male infertility in human population. Spermatids are led through their differentiation into spermatozoa by the apical ectoplasmic specialization (aES), a testis-specific, actin-based anchoring junction restricted to the Sertoli-spermatid interface. The aES helps spermatid movement across the seminiferous epithelium, promotes spermatid positioning, and prevents the release of immature spermatozoa. To accomplish its functions, aES needs to undergo tightly and timely regulated restructuring. Even if components of aES are partly known, the mechanism/s through which aES is regulated remains still elusive. In this review, we propose a model by which the small GTPase Rap1 could regulate aES assembly/remodelling. The characterization of key players in the dynamic of aES, such as Rap1, could open new possibility to develop prognostic, diagnostic, and therapeutic approaches for male patients under treatment for infertility as well as it could lead to the identification of new target for male contraception.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impaired fertility and spermiogenetic disorders with loss of cell adhesion in male mice expressing an interfering Rap1 mutant.

The guanosine trisphosphatase Rap1 serves as a critical player in signal transduction, somatic cell proliferation and differentiation, and cell-cell adhesion by acting through distinct mechanisms. During mouse spermiogenesis, Rap1 is activated and forms a signaling complex with its effector, the serine-threonine kinase B-Raf. To investigate the functional role of Rap1 in male germ cell differen...

متن کامل

Disruption of ectoplasmic specializations between Sertoli cells and maturing spermatids by anti-nectin-2 and anti-nectin-3 antibodies.

AIM To understand the biological functions of the ectoplasmic specializations between Sertoli cells and maturing spermatids in seminiferous epithelia. METHODS In order to disrupt the function of the ectoplasmic specializations, nectin-2, which is expressed at the specialization, was neutralized with anti-nectin-2 antibody micro-injected into the lumen of the mouse seminiferous tubule. Anti-ne...

متن کامل

Tubulobulbar complex: Cytoskeletal remodeling to release spermatozoa

Tubulobulbar complexes (TBCs) are actin-based structures that help establish close contact between Sertoli-Sertoli cells or Sertoli-mature germ cells (spermatids) in the seminiferous tubules of the testes. They are actin-rich push-through devices that eliminate excess spermatid cytoplasm and prepare mature spermatids for release into the tubular lumen. Just prior to spermiation, the elongated s...

متن کامل

Vezatin, a ubiquitous protein of adherens cell-cell junctions, is exclusively expressed in germ cells in mouse testis.

In the male reproductive organs of mammals, the formation of spermatozoa takes place during two successive phases: differentiation (in the testis) and maturation (in the epididymis). The first phase, spermiogenesis, relies on a unique adherens junction, the apical ectoplasmic specialization linking the epithelial Sertoli cells to immature differentiating spermatids. Vezatin is a transmembrane p...

متن کامل

Role of β-Catenin in Post-Meiotic Male Germ Cell Differentiation

Though roles of β-catenin signaling during testis development have been well established, relatively little is known about its role in postnatal testicular physiology. Even less is known about its role in post-meiotic germ cell development and differentiation. Here, we report that β-catenin is highly expressed in post-meiotic germ cells and plays an important role during spermiogenesis in mice....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014